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Key	Component	for	many	technologies:	

Light	 Electricity	

Low	e-windows	

Smart	glass/windows	

TVs:	10~50	Ω/sq	

CapaciBve	touch	
panels	70~200	Ω/o	

LED	
10~30	Ω/o	

ResisBve	touch	panels	
300~750	Ω/o	

Transparent Conductors
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‘TCO’	ca)ons:	post-transi)on	elements:		
Cd2+,	Zn2+,	In3+	,	Ga3+,	Sn4+	

2015	United	States	Geological	Survey	

Indium	is	expensive	!	
In:	$754/kg		(Ag:	$511/kg)	

Transparent Conductors

Key requirements: Wide Band gap, and high conductivity 
Additionally, low cost, and low temperature synthesis are needed
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Why BaSnO3?

Simple cubic (Pm-3m), a = 4.116 Å  
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Why BaSnO3?

Simple cubic (Pm-3m), a = 4.116 Å  
Band insulator with Indirect band gap, Eg = ~3 eV*,  

* S. A. Chambers, T. C. Kaspar, A. Prakash, G. Haugstaad, B. Jalan, APL (2016)
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Ba
Sn

O

Y. Li et al., APL Mater. 3, 011102 (2015)  

D. J. Singh et. al., PRB 44, 9519 (1991)

Simple cubic (Pm-3m), a = 4.116 Å  
Band insulator with Indirect band gap, Eg = ~3 eV*,  
Sn 5s-derived conduction band, low electron effective mass 

* S. A. Chambers, T. C. Kaspar, A. Prakash, G. Haugstaad, B. Jalan, APL (2016)

5s

Why BaSnO3?



University of Minnesota
Driven To Discover

Chemical Engineering and 
Materials Science

Ba
Sn

O

Y. Li et al., APL Mater. 3, 011102 (2015)  

D. J. Singh et. al., PRB 44, 9519 (1991)

Simple cubic (Pm-3m), a = 4.116 Å 
Band insulator with Indirect band gap, Eg = ~3 eV*,  
Sn 5s-derived conduction band, low electron effective mass 
µ (300K) = 100-320 cm2/Vs (~1020 cm-3) in bulk single crystal; highest among 
the perovskite oxides to-date

H.J. Kim et al., Phys Rev B 86 (16) (2012)
* S. A. Chambers, T. C. Kaspar, A. Prakash, G. Haugstaad, B. Jalan, APL (2016)

5s

Luo et. al. Appl. Phys. Lett. 100, 172112 (2012)

Why BaSnO3?
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Y. Li et al., APL Mater. 3, 011102 (2015)  

D. J. Singh et. al., PRB 44, 9519 (1991)

Simple cubic (Pm-3m), a = 4.116 Å 
Band insulator with Indirect band gap, Eg = ~3 eV*,  
Sn 5s-derived conduction band, low electron effective mass 
µ (300K) = 100-320 cm2/Vs (~1020 cm-3) in bulk single crystal; highest among 
the perovskite oxides to-date

H.J. Kim et al., Phys Rev B 86 (16) (2012)
* S. A. Chambers, T. C. Kaspar, A. Prakash, G. Haugstaad, B. Jalan, APL (2016)

5s

Luo et. al. Appl. Phys. Lett. 100, 172112 (2012)

BaSnO3 
Eg = 3 eV

Sr SrSnO3 

Eg = 4 - 4.5 eV +
can be doped with 
high RT mobility

Why BaSnO3?
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Y. Li et al., APL Mater. 3, 011102 (2015)  

D. J. Singh et. al., PRB 44, 9519 (1991)

Simple cubic (Pm-3m), a = 4.116 Å 
Band insulator with Indirect band gap, Eg = ~3 eV*,  
Sn 5s-derived conduction band, low electron effective mass 
µ (300K) = 100-320 cm2/Vs (~1020 cm-3) in bulk single crystal; highest among 
the perovskite oxides to-date 
Potential applications: Transparent conducting oxide, power electronics, low-
dimensional physics of complex oxides with high mobility structures,….

H.J. Kim et al., Phys Rev B 86 (16) (2012)
* S. A. Chambers, T. C. Kaspar, A. Prakash, G. Haugstaad, B. Jalan, APL (2016)

5s

Luo et. al. Appl. Phys. Lett. 100, 172112 (2012)

BaSnO3 
Eg = 3 eV

Sr SrSnO3 

Eg = 4 - 4.5 eV + can be doped with 
high RT mobility

Why BaSnO3?
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A. Spinelli et al., Phys Rev B 81 (15) (2010)
C. Jacoboni et al., Solid State Electron 20 (2), 77 (1977) 

✦ SrTiO3 has µ300K = 5-10 cm2V-1s-1

SrTiO3
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A. Spinelli et al., Phys Rev B 81 (15) (2010)
C. Jacoboni et al., Solid State Electron 20 (2), 77 (1977) 

✦ SrTiO3 has µ300K = 5-10 cm2V-1s-1

SrTiO3

µ 3
00

K
 (c

m
2 V

-1
s-

1 )

n3D (cm-3)

Si BaSnO3 
single crystals

✦ BaSnO3 single crystals: µ300K = 320 cm2V-1s-1 (n = 8×1019 cm-3)

H.J. Kim et al., Appl Phys Express 5 (6), 061102 (2012)
H.J. Kim et al., Phys Rev B 86 (16) (2012)



University of Minnesota
Driven To Discover

Chemical Engineering and 
Materials Science

A. Spinelli et al., Phys Rev B 81 (15) (2010)
C. Jacoboni et al., Solid State Electron 20 (2), 77 (1977) 

✦ SrTiO3 has µ300K = 5-10 cm2V-1s-1

SrTiO3

µ 3
00

K
 (c
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-1
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1 )

n3D (cm-3)

Si BaSnO3 
single crystals

✦ BaSnO3 single crystals: µ300K = 320 cm2V-1s-1 (n = 8×1019 cm-3)

H.J. Kim et al., Appl Phys Express 5 (6), 061102 (2012)
H.J. Kim et al., Phys Rev B 86 (16) (2012)

La:BaSnO3 films (PLD)

BaSnO3: Mobility Comparison



University of Minnesota
Driven To Discover

Chemical Engineering and 
Materials Science

A. Spinelli et al., Phys Rev B 81 (15) (2010)
C. Jacoboni et al., Solid State Electron 20 (2), 77 (1977) 

✦ SrTiO3 has µ300K = 5-10 cm2V-1s-1

✦ BaSnO3 single crystals: µ300K = 320 cm2V-1s-1 (n = 8×1019 cm-3)

H.J. Kim et al., Appl Phys Express 5 (6), 061102 (2012)
H.J. Kim et al., Phys Rev B 86 (16) (2012)

µ 3
00

K
 (c

m
2 V

-1
s-

1 )

n3D (cm-3)

La:BaSnO3  
films (MBE)

✦ BaSnO3 thin films: µ300K = 20-100 cm2V-1s-1(on STO (001)); 150 cm2V-1s-1(on PrScO3 (110))

S. Raghavan et al., APL Mater. 4 016106 (2016)
Z. L-Higgins et al., PRL 116 027602 (2016)

BaSnO3: Mobility Comparison
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A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager III, C. S. Lo, and B. Jalan, Nat. Comm. 8, 15167 (2017)

at 300 K

Conductivity: ITO vs BaSnO3
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A. Spinelli et al., Phys Rev B 81 (15) (2010)
C. Jacoboni et al., Solid State Electron 20 (2), 77 (1977) 

H.J. Kim et al., Appl Phys Express 5 (6), 061102 (2012)
H.J. Kim et al., Phys Rev B 86 (16) (2012)

S. Raghavan et al., APL Mater. 4 016106 (2016)
Z. L-Higgins et al., PRL 116 027602 (2016)

µ 3
00

K
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m
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La:BaSnO3  
films (MBE)

?

BaSnO3: Scientific Questions
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• What limits the low doping in BaSnO3?  

• What limits the electron mobility in thin films?  

• What is the ultimate RT conductivity in this material? 

• Additional scientific questions? 

➡ Role of defects (point defects, stoichiometry, dislocations, etc) 
➡ Heterostructure engineering (modulation doping, polarization doping, etc) for 2D physics?

BaSnO3: Scientific Questions
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S. A. Chambers, T. C. Kaspar, A. Prakash, G. Haugstaad, B. Jalan, APL 108, 152104 (2016)

BaSnO3

LaAlO3

BaSnO3

SrTiO3

Favorable band offsets for band engineered transport in BaSnO3

• What limits the low doping in BaSnO3?  

• What limits the electron mobility in thin films?  

• What is the ultimate RT conductivity in this material? 

• Additional scientific questions? 

➡ Role of defects (point defects, stoichiometry, dislocations, etc) 
➡ Heterostructure engineering (modulation doping, polarization doping, etc) for 2D physics?

BaSnO3: Scientific Questions



University of Minnesota
Driven To Discover

Chemical Engineering and 
Materials Science

Advantages: 

Low-energetic deposition  
Ultra-pure source materials 
Near-monolayer control 
In-situ diagnostics 
Highest quality III-V films grown by MBE

Molecular Beam Epitaxy (MBE)

Technical Challenges (for oxide growth): 

๏ Flux Instability in the presence of oxygen 

๏ Stoichiometry control 

๏ Incomplete oxidation for high electronegativity 
elements (Sn, Ni, W, Ir,……)

elemental  
Sn
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A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, 
J. Vac. Sci. Technol. A 33, 060608 (2015)

MBE: Low Oxidation Potential Elements
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PO2 

MBE Growth of PrNi+3O3

Ni2+O2- phase due to  
incomplete oxidation

L. Feigl et al., J Cryst. Growth 366, 51 (2013) A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, 
J. Vac. Sci. Technol. A 33, 060608 (2015)

MBE: Low Oxidation Potential Elements
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Remedies: 
✦ Combination of high substrate 

temperature and high oxygen pressure or 
✦ Use of reactive gases like ozone..

A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, 
J. Vac. Sci. Technol. A 33, 060608 (2015)

Consequences: 
✦ Instability of metal fluxes in presence 

of high oxygen, filaments oxidation..

Alternative Approach:
✦ MOMBE/hybrid MBE with precursor 

carrying oxygen, e.g. TTIP for Ti, VTIP for 
V; non-trivial to find oxygen containing and 
“MBE compatible” precursors

MBE: Low Oxidation Potential Elements
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A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, 
J. Vac. Sci. Technol. A 33, 060608 (2015)

Consequences: 
✦ Instability of metal fluxes in presence 

of high oxygen, filaments oxidation..

✦ Instead of making oxidant more 
reactive, make metal itself more 
reactive

Our Approach:

Alternative Approach:

Remedies: 
✦ Combination of high substrate 

temperature and high oxygen pressure or 
✦ Use of reactive gases like ozone..

MBE: Low Oxidation Potential Elements

✦ MOMBE/hybrid MBE with precursor 
carrying oxygen, e.g. TTIP for Ti, VTIP for 
V; non-trivial to find oxygen containing and 
“MBE compatible” precursors
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A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, 
J. Vac. Sci. Technol. A 33, 060608 (2015)

Consequences: 
✦ Instability of metal fluxes in presence 

of high oxygen, filaments oxidation..

✦ Instead of making oxidant more 
reactive, make metal itself more 
reactive

Our Approach:

Alternative Approach:

BaSnO3

Remedies: 
✦ Combination of high substrate 

temperature and high oxygen pressure or 
✦ Use of reactive gases like ozone..

MBE: Low Oxidation Potential Elements

✦ MOMBE/hybrid MBE with precursor 
carrying oxygen, e.g. TTIP for Ti, VTIP for 
V; non-trivial to find oxygen containing and 
“MBE compatible” precursors
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A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, J. Vac. Sci. Technol. A 33, 060608 (2015)

Hybrid MBE with Reactive Radicals
TSUB =  
900 °C

Sn  
metal

Sn  
precursor
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A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, J. Vac. Sci. Technol. A 33, 060608 (2015)

•  •  

 Reactive Radicals of 
(CH3)3Sn·

T ≈ 200 °C
+

Sn
CH3

Hexamethylditin  
(HMDT) (CH3)6Sn2
contains NO oxygen

TSUB =  
900 °C

Sn  
precursor

Hybrid MBE with Reactive Radicals
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A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, J. Vac. Sci. Technol. A 33, 060608 (2015)

•  •  

 Reactive Radicals of 
(CH3)3Sn·

T ≈ 200 °C
+

Sn
CH3

Hexamethylditin  
(HMDT) (CH3)6Sn2
contains NO oxygen

out-of-plane lattice parameter = 4.116 Å
t = 30 nm

BSO (001)
STO (001)

Phase-pure BaSnO3 even without plasma

molecular  
oxygen

TSUB =  
900 °C

Sn  
precursor

Hybrid MBE with Reactive Radicals
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T. Wang, A. Prakash, E. Warner, W. L. Gladfelter, and B. Jalan, J. Vac. Sci. Technol. A 33, 020606 (2015).

Hybrid MBE with Reactive Radicals
TSUB =  
900 °C

Sn  
metal

Sn  
precursor

Demonstration for Low Temperature  
Synthesis of High Quality SnO2 Films
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In-Situ Reflection High Energy Electron Diffraction (RHEED)

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Shutter 
open

1 u.c.

BaSnO3

SrTiO3

t (sec)

A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, 
J. Vac. Sci. Technol. A 33, 060608 (2015)

Lattice mismatch = -5.4% 
(compressive)
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In-Situ Reflection High Energy Electron Diffraction (RHEED)
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BaSnO3

SrTiO3

t (sec)

[100]sub [110]sub

film after growth

Lattice mismatch = -5.4% 
(compressive)

Growth Modes and Strain Relaxation

σRMS = 1.2 Å
AFM

A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, 
J. Vac. Sci. Technol. A 33, 060608 (2015)
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In-Situ Reflection High Energy Electron Diffraction (RHEED)
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tfilm (nm) A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, and B. Jalan, 
J. Vac. Sci. Technol. A 33, 060608 (2015)

[100]sub [110]sub

film after growth

Lattice mismatch = -5.4% 
(compressive)

σRMS = 1.2 Å

Growth Modes and Strain Relaxation

AFM
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✦Strain relaxation due to misfit/threading dislocations 
✦Perovskite structure with cube-on-cube epitaxial relationship

HAADF Scanning TEM

STEM in collaboration with Mkhoyan Group, UMN

10 Å

BaSnO3

LaAlO3

Lattice mismatch = - 8%
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✦Strain relaxation due to misfit/threading dislocations 
✦Perovskite structure with cube-on-cube epitaxial relationship

STEM in collaboration with Mkhoyan Group, UMN

So far… 

✓ Phase-pure, epitaxial film on SrTiO3 (001) 

✓ Films grow in a layer-by-layer fashion 

✓ Strain relaxation via misfit dislocation 

➡ Film cation stoichiometry ?? 

I. Lattice parameter measurements 
II. Rutherford backscattering spectroscopy 
III. Electrical transport 
IV. Thermal conductivity

BaSnO3

SrTiO3

HAADF Scanning TEM

BaSnO3

LaAlO3

Strain Relaxation via Misfit Dislocation
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4A. Prakash, P. Xu, X. Wu, G. Haugstad, X. Wang, and B. Jalan, J. Mater. Chem. C (2017) DOI: 10.1039/C7TC00190H
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Stoichiometry Optimization: I
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A. Prakash, P. Xu, X. Wu, G. Haugstad, X. Wang, and B. Jalan, J. Mater. Chem. C (2017) DOI: 10.1039/C7TC00190H

Stoichiometry Optimization: I
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A. Prakash, P. Xu, X. Wu, G. Haugstad, X. Wang, and B. Jalan, J. Mater. Chem. C (2017) DOI: 10.1039/C7TC00190H

Sn-deficient Ba-deficient

Sn/Ba BEP Ratio

Adsorption-Controlled Growth

✦ Additional diffraction peak for Sn-rich films 

✦ Lattice parameter increases for Ba-rich and remains unchanged 

for stoichiometric and Sn-rich films. 

✦ RBS confirms “MBE growth window” i.e. for a range of Sn:Ba 

flux ratio, cation stoichiometry is self-regulating.

Stoichiometry Optimization: I
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A. Prakash, P. Xu, X. Wu, G. Haugstad, X. Wang, and B. Jalan, J. Mater. Chem. C, (2017) DOI: 10.1039/c7tc00190h

• Carrier density and mobility remains higher 
within the growth window. 

• Both Sn- and Ba-vacancies act as acceptor-
like defects

Sn-deficient Ba-deficient

Sn-deficient Ba-deficient

Stoichiometry Optimization: II
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✶H.J. Kim et al., Thermochim. Acta 585, 16 (2014)

BaSnO3

SrTiO3

350 nm

Thermal Conductivity as a Measure of Stoichiometry

Non-Stoichiometric Stoichiometric

Λ (bulk single crystal)✶ ≈ 13.2 Wm-1K-1

Thermal conductivity measurements in 
collaboration with Prof. Xiaojia Wang’s 

group, UMN

6

Stoichiometry Optimization: III
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BaSnO3

SrTiO3

350 nm

Non-Stoichiometric Stoichiometric

✶H.J. Kim et al., Thermochim. Acta 585, 16 (2014)

Λ (bulk single crystal)✶ ≈ 13.2 Wm-1K-1

Thermal conductivity measurements in 
collaboration with Prof. Xiaojia Wang’s 

group, UMN

6

Thermal Conductivity as a Measure of Stoichiometry

A. Prakash, P. Xu, X. Wu, G. Haugstad, X. Wang, and B. Jalan, J. Mater. Chem. C (2017) DOI: 10.1039/C7TC00190H

Stoichiometry Optimization: III
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BaSnO3

SrTiO3

350 nm

Non-Stoichiometric Stoichiometric

Thermal conductivity measurements in 
collaboration with Prof. Xiaojia Wang’s 

group, UMN

Λ (bulk single crystal)✶ ≈ 13.2 Wm-1K-1

6

Thermal Conductivity as a Measure of Stoichiometry

✶H.J. Kim et al., Thermochim. Acta 585, 16 (2014)
A. Prakash, P. Xu, X. Wu, G. Haugstad, X. Wang, and B. Jalan, J. Mater. Chem. C (2017) DOI: 10.1039/C7TC00190H

Stoichiometry Optimization: III
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Buffer layer(BaSnO3)

SrTiO3 (001)

Note: 
 Lattice mismatch = -5.4% (compressive)

Ba1-xLaxSnO3

124 nm

124 nm
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Buffer layer(BaSnO3)

SrTiO3 (001)

Note: 
 Lattice mismatch = -5.4% (compressive)

Ba1-xLaxSnO3

124 nm

124 nm

Experimentally, M ⇒ I occurs at  
nc = 5×1018 - 1.5×1019 cm-3 

Metal

Insulator

A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager III, C. S. Lo, and B. Jalan, Nat. Comm. 8, 15167 (2017)

Doping and Electronic Transport 
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Buffer layer(BaSnO3)

SrTiO3 (001)

Note: 
 Lattice mismatch = -5.4% (compressive)

Ba1-xLaxSnO3

124 nm

124 nm

Metal

Insulator

Experimentally, M ⇒ I occurs at  
nc = 5×1018 - 1.5×1019 cm-3 

Calculated nc (intrinsic M ⇒ I)  
= 1017 - 1018 cm-3  

(an order of magnitude lower)

Compensating Defects ?

A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager III, C. S. Lo, and B. Jalan, Nat. Comm. 8, 15167 (2017)

Doping and Electronic Transport 
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✦For n3d < ~1020 cm-3, mobility⬇ and the Hall density deviates from linearity (solid line) 

✦ Indicative of scattering and compensation due to charged defects*

300 K300 K

*J. H. You et. al., JAP 99, 033706 (2006)

Impurity 
scattering

scattering  
mechanism 

??

Hall Electron Density and Mobility

A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager III, C. S. Lo, and B. Jalan, Nat. Comm. 8, 15167 (2017)
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✦No freeze-out over 1.8 - 300 K, a degenerate semiconductor 
✦T-dependent mobility suggests different scattering mechanisms at play

electron density 
decreases

A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager III, C. S. Lo, and B. Jalan, Nat. Comm. 8, 15167 (2017)

Hall Electron Density and Mobility
Temperature Dependent Measurements
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300 K

A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager III, C. S. Lo, and B. Jalan, Nat. Comm. 8, 15167 (2017)

Mobility Limiting Scattering Mechanisms
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A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager III, C. S. Lo, and B. Jalan, Nat. Comm. 8, 15167 (2017)

Mobility Limiting Scattering Mechanisms
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300 K

La-doped BaSnO3 (our data)

BaSnO3 Vs GaN
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300 K

La-doped BaSnO3 (our data) n-doped GaN*

*J. H. You et. al., JAP 99, 033706 (2006)

✦Taking analogy from GaN, mobility and density in low-doped BaSnO3 is limited by charged 

dislocations 

✦RT mobility of BaSnO3 films grown on STO substrates ~125 cm2/Vs 

✦MUCH room for improvements if dislocation densities are brought down
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300 K

La-doped BaSnO3 (our data) n-doped GaN*

✦Taking analogy from GaN, mobility and density in low-doped BaSnO3 is limited by charged 

dislocations 

✦RT mobility of BaSnO3 films grown on STO substrates ~125 cm2/Vs 

✦MUCH room for improvements if dislocation densities are brought down

?
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*J. H. You et. al., JAP 99, 033706 (2006)
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• RT conductivity comparable to that 
of the best ITO film.  

• Much room for improvement if 
defect density is brought down 

at 300 K

10 Å

A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager III, C. S. 
Lo, and B. Jalan, Nat. Comm. 8, 15167 (2017)
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conductivity = 104 S/cm

Optical Transmission

S. Arezoomandan, A. Prakash, A. Chanana, J. Yue, A. Mao, S. Blair, A. Nahata, B. Jalan, and B. Sensale-Rodriguez, Sci. Rep. 8, 3577 (2018) 
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•  •  

 Reactive Radicals of 
(CH3)3Sn·

Novel Hybrid MBE/MOCVD growth approach using 
reactive radicals

✦Novel growth approach for BaSnO3 using reactive radical mechanism 

✦Discovered MBE growth window for adsorption controlled growth  

✦Highest room temperature mobility of 125 cm2V-1s-1 for BaSnO3 films grown on SrTiO3 

✦Mobility is limited by dislocation scattering at low n3D while ionized impurity scattering is the 
dominant mechanism at high n3D 

✦RT mobility is limited by LO phonon scattering in the intermediate doping regime 

✦Much room for improvement if dislocation density is reduced. 

✦Sheet resistance as low as 2-3 ohm/sq. was obtained with significant room for improvement.

Ionized 
Impurity 

scattering

Charged  
dislocation 
scattering
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